## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2023
PPH1MC03 - MATHEMATICAL PHYSICS

Date: 06-11-2023


Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

## SECTION A - K1 (CO1)

## Answer ALL the questions

1 Fill in the blanks.
a) If a function is analytic in a domain $D$ then it satisfies --------- equation at all points in D.
b) A point at which $f(z)$ is not analytic is known as -----------.
c) The characteristic equation of the given matrix A is ------------ .
d) The Maclaurin series is given as --------------- .
e) $n P_{n}(x)=--------------$.

## SECTION A - K2 (CO1)

## Answer ALL the questions

2 Answer the following
a) Define residue at infinity.
b) State Cauchy's Integral theorem.
c) What is the kernel of Fourier Transform?
d) Evaluate $\Gamma\left(-\frac{1}{2}\right)$.
e) What does the symbolic notation $\mathrm{P}(\mathrm{A} / \mathrm{B})$ says in probability?

SECTION B - K3 (CO2)
Answer any THREE of the following
$(3 \times 10=30)$
i)Use Cauchy's integral formula to evaluate $\int_{c} \frac{z}{\left(z^{2}-3 z+2\right)} d z$ where $C$ is the circle $|z-2|=1 / 2(6$ Marks).
ii) $\int_{c} \frac{2 z+1}{\left(z^{2}+z\right)} d z$ Where C is a circle of $|z|=1 / 2$ (4 Marks).

4 Find the Eigen values and Eigen vectors of matrix

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

$5 \quad$ Show that $\beta(1, \mathrm{~m})=\frac{\Gamma l \Gamma m}{\Gamma l+m}$.
6 Find the Fourier Transform of $e^{-a x^{2}}$ where a $>0$.
7 An experiment succeeds twice as often as it fails. Find the chance that in the next 6 trials there will be at least 4 successes.

## Answer any TWO of the following

| 8 | State and Prove Cauchy's Integral formula. |
| :--- | :--- |

9 Using complex variable techniques evaluate the real integral $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{(5-4 \sin \theta)} d \theta$.
10 Express the function $f(x)=4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre polynomial.
11 Use Fourier sine transform to solve the equation $\frac{\partial u}{\partial t}=k \frac{\partial 2 u}{\partial x^{2}}$ under the conditions i) $u(0, t)=0$ ii) $\mathrm{u}(\mathrm{x}, 0)=e^{-x} \quad$ iii) $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is bounded .

## SECTION D - K5 (CO4)

Answer any ONE of the following
12 Find the first four terms of the Taylor's series expansion of the complex variable function $f(z)=\frac{z+1}{(z-3)(z-4)}$ about $\mathrm{z}=2$ and Find the region of Convergence.
13 Obtain the generating function of Hermite Polynomials (Rodrigue Formula).
SECTION E - K6 (CO5)
Answer any ONE of the following
14 Evaluate $\int_{c} \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z$ where ' $c$ ' is the circle i) $|z|=2$ and ii) $|z+i|=\sqrt{3}$.
15 Find the Fourier transform for the function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1-x^{2} & \text { if }|x| \leq 1 \\ 0 & \text { if }|x|>1\end{array}\right.$. And use it to evaluate $\int_{0}^{\infty} \frac{(x \cos x-\sin x)}{\left(x^{3}\right)} \cos \frac{x}{2} \mathrm{dx}$.

