J	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – PHYSICS FIRST SEMESTER – NOVEMBER 2023		
0	PPH1MC03 – MATHEMATICAL PHYSICS		
Date: 06-11-2023 Dept. No. Max. : 100 Marks Time: 01:00 PM - 04:00 PM			
	SECTION A – K1 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$		
1	Fill in the blanks.		
a)	If a function is analytic in a domain D then it satisfies equation at all points in D.		
b)	A point at which f(z) is not analytic is known as		
c)	The characteristic equation of the given matrix A is		
d)	The Maclaurin series is given as		
e)	$nP_n(x) =$		
	SECTION A – K2 (CO1)		
	Answer ALL the questions (5 x 1 = 5)		
2	Answer the following		
a)	Define residue at infinity.		
b)	State Cauchy's Integral theorem.		
c)	What is the kernel of Fourier Transform?		
d)	Evaluate $\Gamma(-\frac{1}{2})$.		
e)	What does the symbolic notation P (A/B) says in probability?		
SECTION B – K3 (CO2)			
	Answer any THREE of the following(3 x 10 = 30)		
3	i) Use Cauchy's integral formula to evaluate $\int \frac{z}{z} dz$ where C is the circle $ z - 2 = \frac{1}{2}$ (6)		
	Marks).		
	ii) $\int_c \frac{2z+1}{(z^2+z)} dz$ Where C is a circle of $ z =1/2$ (4 Marks).		
4	Find the Eigen values and Eigen vectors of matrix		
	$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}.$		
5	Show that β (l,m)= $\frac{\Gamma l \Gamma m}{\Gamma l+m}$.		
6	Find the Fourier Transform of e^{-ax^2} where $a > 0$.		
7	An experiment succeeds twice as often as it fails. Find the chance that in the next 6 trials there will be at least 4 successes.		

SECTION C – K4 (CO3)		
	Answer any TWO of the following $(2 \times 12.5 = 25)$	
8	State and Prove Cauchy's Integral formula.	
9	Using complex variable techniques evaluate the real integral $\int_{0}^{2\pi} \frac{\sin^2\theta}{(5-4\sin\theta)} d\theta$.	
10	Express the function $f(x) = 4x^3+6x^2+7x+2$ in terms of Legendre polynomial.	
11	Use Fourier sine transform to solve the equation $\frac{\partial u}{\partial t} = k \frac{\partial 2u}{\partial x^2}$ under the conditions i) u(0,t)=0 ii) u(x,0)= e^{-x} iii) u(x,t) is bounded.	
SECTION D – K5 (CO4)		
	Answer any ONE of the following(1 x 15 = 15)	
12	Find the first four terms of the Taylor's series expansion of the complex variable function $f(z) = \frac{z+1}{(z-3)(z-4)}$ about z=2 and Find the region of Convergence.	
13	Obtain the generating function of Hermite Polynomials (Rodrigue Formula).	
SECTION E – K6 (CO5)		
	Answer any ONE of the following $(1 \times 20 = 20)$	
14	Evaluate $\int_c \frac{12z-7}{(z-1)^2(2z+3)} dz$ where 'c' is the circle i) $ z =2$ and ii) $ z+i =\sqrt{3}$.	
15	Find the Fourier transform for the function	
	$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 1\\ 0 & \text{if } x > 1 \end{cases}$ And use it to evaluate $\int_0^\infty \frac{(x\cos x - \sin x)}{(x^3)} \cos \frac{x}{2} dx$.	
	&&&&&&&&	